1. Prove that the group of all invertible upper triangular matrices of size $n \times n$ over a field is solvable.

2. Let \mathbb{F}_3 be the field of 3 elements. Consider the group $PSL_2(\mathbb{F}_3)$ defined as the quotient of the group of 2×2 matrices over \mathbb{F}_3 of determinant equal to 1 by the subgroup of diagonal matrices.

a) Find the order of $PSL_2(\mathbb{F}_3)$.

b) Prove that $PLS_2(\mathbb{F}_3)$ is isomorphic to A_4 (hint: consider lines in the plane \mathbb{F}_3^2).

3. Let G be a group of order 2000 with more than one Sylow 5-subgroup.

a) Show that any Sylow 5 sugroup P of G satisfies $P = N_G(P)$, i.e., $g^{-1}Pg = P$ for $g \in G$ implies $g \in P$.

b) Prove that if P, P' are two distinct Sylow 5-subgroups of G, then $|P \cap P'| = 25$.

4. Let *D* be an associative ring with unit without zero divisors. Suppose that there exists a subring *K* of *D* such that ax = xa for all $a \in K$ and $x \in D$, *K* is a field (with respect to the operations of *D*), and *D* is finite-dimensional as a vector space over *K*. Show that *D* is a division ring (i.e., every non-zero element is invertible).

5. Let R be the ring of 2×2 matrices over the ring $\mathbb{Z}/6\mathbb{Z}$. Describe all two-sided ideals of R.

6. Let I and J be two distinct maximal ideals in a commutative ring R.a) Prove that one has an exact sequence

$$0 \to IJ \to I \oplus J \to R \to 0$$

of R-modules.

b) Prove that if, in addition, I and J are projective R-modules, then IJ is a projective R-module.

- 7. Let ζ be a primitive 7th root of unity in \mathbb{C} . Let $\alpha = \zeta + \zeta^{-1}$. a) Show that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$.
 - b) Show that if $\beta \in \mathbb{Q}(\alpha)$ satisfies $\beta^3 \in \mathbb{Q}$, then $\beta \in \mathbb{Q}$.
- 8. Find all automorphisms of the fields $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, and $\mathbb{Q}(\sqrt[3]{2})$.