Algebra Qualifying Examination January 6, 2020

Instructions:

- Read all problems first; make sure that you understand them, and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial.
- Credit awarded will be based on the correctness of your answers, as well as the clarity and main steps of your reasoning. Answers must be legible and written in a structured and understandable manner. Do scratch work on a separate page.
- Start each problem on a new page, clearly marking the problem number on that page.
- Rings always have an identity $1 \neq 0$, and all modules are left modules.
- Throughout, \mathbb{Z} denotes the integers, \mathbb{Q} denotes the rational numbers, \mathbb{R} denotes the real numbers, and \mathbb{C} denotes the complex numbers.
- 1. Let H be a subgroup of a group G. Consider the *normalizer* and *centralizer* (respectively) of H:

$$N_G(H) := \{ g \in G \mid gHg^{-1} = H \}$$
 and $C_G(H) := \{ g \in G \mid gh = hg \text{ for all } h \in H \}$.

- (a) (5 points) Prove that both the normalizer and centralizer are subgroups of G.
- (b) (5 points) Prove that the centralizer is a normal subgroup of the normalizer.
- (c) (5 points) Prove that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H) (the group of automorphisms of H, that is, bijective group homomorphisms from H to itself).
- (d) (5 points) Assume additionally that H is a normal subgroup of G, and that H is finite. Prove that the index of $C_G(H)$ in G is finite.
- 2. (10 points) Recall that by definition, a commutative ring R is local if R has a unique maximal ideal. Prove that a commutative ring R is local if and only if for all $r, r' \in R$, if $r + r' = 1_R$ then r or r' is a unit.
- 3. (10 points) Let $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ be an exact sequence of R-modules. Let $\mathrm{id}_A, \mathrm{id}_C$ denote the identity maps on A, C, respectively. Consider the following statements:
 - (i) There is an R-module homomorphism $\phi: C \to B$ such that $\beta \circ \phi = \mathrm{id}_C$.
 - (ii) There is an R-module homomorphism $\psi: B \to A$ such that $\psi \circ \alpha = \mathrm{id}_A$.
 - Prove that (i) implies (ii). (Note it is also true that (ii) implies (i).)

- 4. Let R be a commutative ring and let M be an R-module. Let T(M) be the set of *torsion* elements of M, that is,
 - $T(M) = \{ m \in M \mid r \cdot m = 0 \text{ for some nonzero } r \in R \}.$
 - (a) (5 points) Prove that if R is an integral domain, then T(M) is an R-submodule of M.
 - (b) (5 points) Give an example of a ring R and an R-module M for which T(M) is not an R-submodule of M.
 - (c) (5 points) Let M, N be R-modules, and let $f: M \to N$ be an R-module homomorphism. Prove that $f(T(M)) \subseteq T(N)$.
- 5. (10 points) Let R be a commutative ring and let I, J be ideals of R. Prove that there is an R-module isomorphism $(R/I) \otimes_R (R/J) \cong R/(I+J)$.
- 6. The goal of this problem is to prove that \mathbb{C} is an algebraically closed field. (So, do NOT use this fact in your solution!)
 - (a) (5 points) Let K/\mathbb{R} be a finite extension. Prove that if $[K : \mathbb{R}]$ is odd, then $K = \mathbb{R}$.
 - (b) (5 points) Let L/\mathbb{R} be a finite Galois extension of \mathbb{R} . Prove that $[L : \mathbb{R}]$ is a power of 2. (Hint: Sylow's Theorem)
 - (c) (5 points) Prove that there is no extension K/\mathbb{C} with $[K:\mathbb{C}]=2$.
 - (d) (5 points) Let K/\mathbb{C} be any finite extension. Show that there is some finite Galois extension L/\mathbb{R} with $\mathbb{R} \subseteq \mathbb{C} \subseteq K \subseteq L$. Show that $L = \mathbb{C}$, and deduce that $K = \mathbb{C}$.
- 7. Let F be a finite field, let f be a monic irreducible polynomial in F[x], and let $\alpha \in \overline{F}$ be a root of f. Prove the following:
 - (a) (5 points) $F(\alpha)$ is the splitting field for f over F, and
 - (b) (5 points) the set of roots of f is $\{\alpha^{|F|^r} \mid r \geq 1\}$.
- 8. (10 points) Is the symmetric group S_4 the internal direct sum of two or more nontrivial subgroups? Prove your answer.