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Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work
clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let f be a continuous, 27 periodic function havmg the Fourier series f(t) =
> o oo Cr€™. The trapezoidal rule for numerically finding J27 f()dt is given by

n—1

Qulf) = 23 flamh/n).
k=0
(a)} Let Sp(t) = 1o, c,ke““ Show that Qn(Sp-1) = 0% f(t)dt.
(b) Show that [@n(7) — J2 F(2)dt] < 2] — Soslcpan.

¢} Suppose that |c;| < k 6 for all k # 0. Estimate |Qn(f) — o f(t)di|.
0

Problem 2. Consider the Sturm-Liouville (S-L) problem
== f, W'(0) =0, u(l) +4'(1)=0.
(a) Find the Green’s functzon G(z,y), for this problem.
(b} Show that Gf(z) = fo (z,y) f(y)dy is compact and self adjoint on L*[0, 1].
(¢) Show that the eigenfunctions of the eigenvalue problem w” + Au, w/(0) = 0, w(1) +
2'(1) = 0 form a complete set orthogonal set in L?[0,1]. (Hint: Show tha.t the the
null space of G is {0}.) :

tﬁ}.

Problem 3. Find the first term of the asymptotic series for F(z) = [;° e® 3% dt, © — +o0.

Problem 4. Let & be Schwartz space and & be the space of tempered distributions. In
addition, let the Fourier and inverse Fourier transforms be given by

Flw) = / f(H)e ™ dt and f(x f Flw)e™ duw.

(a) Define S and give the semi-norm topology for it. In addition, define &'.

(b) Given that F is a continuous bijection mapping & — &, define the Fourier transform
of a tempered distribution.

(c) Show that if T € &, then T = (—iw)*T, where k = 1,2,.

1 <

0 |t > 1. Show that T/(t) = 6(t + 1) — 6(t — 1). Use (¢} to find T

{(d) Let T'(t) =
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Problem 1. In this problem P/ denotes the space of polynomials on R? of degree at most j.

Let Q be a polygonal domain with boundary T' in R?, f a given function in L%(Q), and u € H'(Q)
the solution of

(1.1) alu,v) ::/ Vu-Vvda:-}-fuvds =f fvde =: L(v), for all v c HY(Q).
o) r o

Let Tp, 0 < b < 1, be shape regular triangulations of {2. The elements of this partitioning will
be denoted by 7 and and the edges of the elements are denoted by e. Set

Vi, = {up, € Hl(ﬂ) D uplr € Pl, T €T}
(equipped with the norm in H'({2)) and the composite trapezoidal quadrature

antw) = 3 Mwm) + w(m),

eCT”
where P, and P» are the end points of the edge e. Consider the following Galerkin FEM: find
up, € Vi, such that '
ap(up, @) = (Vup, Vo) + Qn(upd) = L(#), V¢ € V.

(a) Derive the strong form of problem (1.1) assuming that the solution u is smooth.

(b) Consider as given the coercivity of a{.,.} in H', i.e. for some constant ¢ > 0 and for all
u € H'(2) we have a(u,u) > collull, 1(y Show that there is a constant a > 0, independent
of h, such that

Qn(v?) > ao/’t)?ds Yo eV
r

and deduce the (uniform) coercivity of ap(:, ) in V.
(c) Prove that there is a constant oy > 0, independent of h, satisfying

: |a(u, wh) — ap (u, wp)|
wy, — ul gy S al{ inf ||u—vpllgiy + sup .
” ”H ™ ohEV: ” HH ( ) Vi giwhﬂffl(ﬂ)

Problem 2. Given T > 0, consider the following parabolic initial boundary value problem for
u(z, t):

(2, 1) — Uge(z,t) + u(z,t) =0, for z€(0,1), 0 <t < T,
(2.1) w(0,t) = 0, ux(1,8) +u(l,£) = g(t), 0 <t < T,
u(z,0) = up(z), = ¢ (0,1),
where g(t) is a given function of ¢t € (0,T] and ug(z) is a given function of = € (0,1}.

(a) Consider the following weak form of (2.1): find u{z, ) such that for any fixed t > 0, u(t) € V
and satisfies

‘fw@ﬁﬂﬂm+ﬂﬂm@$L@@, 0<t<T, WoeV,
]

What are the space V, the bilinear form a(:,-), and the linear form L(t,-) corresponding to

the above problem?
1



2

(b) Consider a partition of the interval (0,1) into N equal elements with size h = 1/N. Let V;, C
V be the finite element space of continuous piecewise linear functions over the partitioning.
Introduce the semi-discrete Galerkin method and compute the global stiffness matrix matrix
corresponding to the bilinear form a(,-) for N = 2.

(c) Given an integer M > 0, define k = T/M and t, = kn, n = 0,1,2,..., M. Let U} € V}, be
an approximation of u{.,£,) obtained by the fully implicit scheme in time (we take g(t) = 0):

[ W8 ) ~ Ui @) )i b ofUF 9 =0, ¥ € Yoy =12, M,
O

with U}? determined through the initial data. Derive an a priori estimate for max,—1,..as [|[Ul v
through U},

Problem 3. Consider the unit segment K = [0,1] and let P be the set of functions that are
piecewise quadratic over the intervals [0, $1U[3,1] and are of class C! over K. Functions in P are

continuous and their first derivatives are continuous at % Let ¥ = {o1,...,04} be defined for
p € P as o1(p) = p(0), o2(p) = p'(0), ea{p) = p(1}, oa{p) = p'(1). Prove that the triple (K, P, X)
is a finite element. Compute the shape functions associated with the degrees of freedom in X.




