Applied/Numerical Analysis Qualifying Exam

January 6, 2014

Cover Sheet - Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name	
Nome	
1 1 4 11 1 5	

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part January 6, 2014

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let f be a continuous, 2π periodic function having the Fourier series f(t) = $\sum_{k=-\infty}^{\infty} c_k e^{ikt}$. The trapezoidal rule for numerically finding $\int_0^{2\pi} f(t)dt$ is given by

$$Q_n(f) = \frac{2\pi}{n} \sum_{k=0}^{n-1} f(2\pi k/n).$$

- (a) Let $S_m(t) = \sum_{k=-m}^m c_k e^{ikt}$. Show that $Q_n(S_{n-1}) = \int_0^{2\pi} f(t) dt$. (b) Show that $|Q_n(f) \int_0^{2\pi} f(t) dt| \le 2\pi ||f S_{n-1}||_{C[0,2\pi]}$.
- (c) Suppose that $|c_k| \leq |k|^{-6}$ for all $k \neq 0$. Estimate $|Q_n(f) \int_0^{2\pi} f(t)dt|$.

Problem 2. Consider the Sturm-Liouville (S-L) problem

$$u'' = f$$
, $u'(0) = 0$, $u(1) + u'(1) = 0$.

- (a) Find the Green's function, G(x, y), for this problem.
- (b) Show that $Gf(x) = \int_0^1 G(x, y) f(y) dy$ is compact and self adjoint on $L^2[0, 1]$. (c) Show that the eigenfunctions of the eigenvalue problem $u'' + \lambda u$, u'(0) = 0, u(1) + u(1) = 0u'(1) = 0 form a complete set orthogonal set in $L^2[0,1]$. (Hint: Show that the the null space of G is $\{0\}$.)

Problem 3. Find the first term of the asymptotic series for $F(x) := \int_0^\infty e^{xt-\frac{1}{2}t^2} dt$, $x \to +\infty$.

Problem 4. Let S be Schwartz space and S' be the space of tempered distributions. In addition, let the Fourier and inverse Fourier transforms be given by

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
 and $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\omega)e^{i\omega t}d\omega$.

- (a) Define S and give the semi-norm topology for it. In addition, define S'.
- (b) Given that \mathcal{F} is a continuous bijection mapping $\mathcal{S} \to \mathcal{S}$, define the Fourier transform of a tempered distribution.
- (c) Show that if $T \in \mathcal{S}'$, then $\widehat{T^{(k)}} = (-i\omega)^k \widehat{T}$, where $k = 1, 2, \ldots$
- (d) Let $T(t) = \begin{cases} 1 & |t| \le 1 \\ 0 & |t| > 1 \end{cases}$. Show that $T'(t) = \delta(t+1) \delta(t-1)$. Use (c) to find \widehat{T} .

Applied/Numerical Analysis Qualifying Exam

January 6, 2014

Cover	Sheet -	Numer	ical .	Anal	ysis	Part
-------	---------	-------	--------	------	------	------

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

AT .		
Name	 	

	·	

NUMERICAL ANALYSIS QUALIFIER

January, 2014

Problem 1. In this problem \mathbb{P}^j denotes the space of polynomials on \mathbb{R}^2 of degree at most j.

Let Ω be a polygonal domain with boundary Γ in \mathbb{R}^2 , f a given function in $L^2(\Omega)$, and $u \in H^1(\Omega)$ the solution of

$$(1.1) \hspace{1cm} a(u,v) := \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} uv ds = \int_{\Omega} fv dx =: L(v), \hspace{1cm} \text{for all} \hspace{0.2cm} v \in H^{1}(\Omega).$$

Let \mathcal{T}_h , 0 < h < 1, be shape regular triangulations of Ω . The elements of this partitioning will be denoted by τ and and the edges of the elements are denoted by e. Set

$$V_h := \{ v_h \in H^1(\Omega) : v_h|_{\tau} \in \mathbb{P}^1, \quad \tau \in \mathfrak{T}_h \}$$

(equipped with the norm in $H^1(\Omega)$) and the composite trapezoidal quadrature

$$Q_h(w) := \sum_{e \in \Gamma} \frac{|e|}{2} (w(P_1) + w(P_2)),$$

where P_1 and P_2 are the end points of the edge e. Consider the following Galerkin FEM: find $u_h \in V_h$ such that

$$a_h(u_h, \phi) := (\nabla u_h, \nabla \phi) + Q_h(u_h \phi) = L(\phi), \quad \forall \phi \in V_h.$$

- (a) Derive the strong form of problem (1.1) assuming that the solution u is smooth.
- (b) Consider as given the coercivity of a(.,.) in H^1 , i.e. for some constant $c_0 > 0$ and for all $u \in H^1(\Omega)$ we have $a(u,u) \ge c_0 ||u||^2_{H^1(\Omega)}$. Show that there is a constant $\alpha_0 > 0$, independent of h, such that

$$Q_h(v^2) \ge \alpha_0 \int_{\Gamma} v^2 ds \quad \forall v \in V_h$$

and deduce the (uniform) coercivity of $a_h(\cdot,\cdot)$ in V_h .

(c) Prove that there is a constant $\alpha_1 > 0$, independent of h, satisfying

$$||u_h - u||_{H^1(\Omega)} \le \alpha_1 \left\{ \inf_{v_h \in V_h} ||u - v_h||_{H^1(\Omega)} + \sup_{w_h \in V_h} \frac{|a(u, w_h) - a_h(u, w_h)|}{||w_h||_{H^1(\Omega)}} \right\}.$$

Problem 2. Given T > 0, consider the following parabolic initial boundary value problem for u(x,t):

(2.1)
$$u_t(x,t) - u_{xx}(x,t) + u(x,t) = 0, \text{ for } x \in (0,1), \ 0 < t \le T,$$

$$u(0,t) = 0, \ u_x(1,t) + u(1,t) = g(t), \ 0 < t \le T,$$

$$u(x,0) = u_0(x), \ x \in (0,1),$$

where q(t) is a given function of $t \in (0,T]$ and $u_0(x)$ is a given function of $x \in (0,1)$.

(a) Consider the following weak form of (2.1): find u(x,t) such that for any fixed t>0, $u(t)\in V$ and satisfies

$$\int_0^1 u_t(x,t)\phi(x)dx + a(u(t),\phi) = L(t,\phi), \qquad 0 < t \le T, \quad \forall \phi \in V,$$

What are the space V, the bilinear form $a(\cdot,\cdot)$, and the linear form $L(t,\cdot)$ corresponding to the above problem?

- (b) Consider a partition of the interval (0,1) into N equal elements with size h=1/N. Let $V_h \subset V$ be the finite element space of continuous piecewise linear functions over the partitioning. Introduce the semi-discrete Galerkin method and compute the global stiffness matrix matrix corresponding to the bilinear form $a(\cdot,\cdot)$ for N=2.
- (c) Given an integer M > 0, define k = T/M and $t_n = kn$, n = 0, 1, 2, ..., M. Let $U_h^n \in V_h$ be an approximation of $u(., t_n)$ obtained by the fully implicit scheme in time (we take g(t) = 0):

$$\int_0^1 (U_h^n(x) - U_h^{n-1}(x)) \, \phi(x) dx + k \, a(U_h^n, \phi) = 0, \, \forall \phi \in V_h, \, n = 1, 2, \dots, M,$$

with U_h^0 determined through the initial data. Derive an *a priori* estimate for $\max_{n=1,\dots,M} \|U_h^n\|_V$ through U_h^0 .

Problem 3. Consider the unit segment K = [0,1] and let P be the set of functions that are piecewise quadratic over the intervals $[0,\frac{1}{2}] \cup [\frac{1}{2},1]$ and are of class \mathbb{C}^1 over K. Functions in P are continuous and their first derivatives are continuous at $\frac{1}{2}$. Let $\Sigma = \{\sigma_1,\ldots,\sigma_4\}$ be defined for $p \in P$ as $\sigma_1(p) = p(0)$, $\sigma_2(p) = p'(0)$, $\sigma_3(p) = p(1)$, $\sigma_4(p) = p'(1)$. Prove that the triple (K, P, Σ) is a finite element. Compute the shape functions associated with the degrees of freedom in Σ .