Applied Analysis Part
January 10, 2024

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are
skipping. No extra credit for doing all four.

Problem 1. Let P be the set of all polynomials.

(a) State and sketch a proof of the Weierstrass Approximation Theorem.

(b) Use (a) to show that P is dense in L?[0,1]. (You may use the the fact that C[0,1] is
dense in L*0,1].)

(c) Let U := {p,}2, be the orthonormal set of polynomials obtained from P via the Gram-
Schmidt process. Show that U is a complete set in L?[0, 1].

Problem 2. Let D be the set of compactly supported functions defined on R and let D’ be the
corresponding set of distributions.

(a) Define convergence in D and D'.
(b) Show that 1) € D satisfies ¢ = ¢" for some ¢ € D if and only if

/ Y(x)dr =0 and / xip(x)dr = 0.
(c) Find all distributions 7" € D’ such that 7"(z) = 6(z + 1) — 26(z) + 6(z — 1).

Problem 3. Let H be a Hilbert space and let C(H) be the set of compact operators on H.

(a) State and prove the Fredholm Alternative.

(b) State the Closed Range Theorem.

(c) Let H = L?[0,1]. Define the kernel k(z,y) := x3y? and let Ku(z) = fol k(z,y)u(y)dy.
Show that K is in C(H).

(d) Let L =1—MK, X € C, with K as defined in part (c) above. Find all A for which Lu = f
can be solved for all f € L?[0,1]. For these values of A, find the resolvent (I — AK)™!.

Problem 4. Consider the kernel k(z,y) = Y07 (1 + n) 2P,41(x)P,(y), where the P,’s are
the orthogonal set of Legendre polynomials, relative to L?[—1,1]. They are normalized so that

f_ll P (7)%dr = ;-2

2n+1"

(a) Show that Ku(z) = [, k(z,y)u(y)dy is a compact operator on L2[—1,1].
(b) Determine the spectrum of K.

You may use these identities involving the Bernstein polynomials. The last two identities start the sum at
7 =0, rather than j = 1.
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Problem 1. Let T be the unit triangle in R?, with vertices v; = (0,0), vo = (1,0), and
vs = (0,1) and edges e; = v1va, €3 = vov3 and e = v3v1. Let z; be the midpoint of the edge e;.
Let TWy = {(a — cy,b+ cz) : a,b,c € R} (so that members of TW) are vector functions over
T), and [Po]? € TW, C [P1]?). Finally, let o;(@) = @(z;) - t;, where ; is the counterclockwise-
pointing unit vector tangent to 9T on e;, and let ¥ = {01,02,03}.

(a) Show that (T,TWy, X) is a finite element triple.
(b) Find a basis {@1, P2, F3} for TW, that is dual to X, that is, 0;(F;) = 0;; with d;; =1
if i = j and 6;; = 0 otherwise.
(¢) Let (Il@)(z) = Zle oi(@)@i(x), z € T and @ € [H*(T))?. Show that
1@ = Tl Ly < Ol ayje + [Tl mzery), @ € [HA(T)).
Note: You may use standard analysis results such as trace, Sobolev, and Poincare

inequalities and the Bramble-Hilbert Lemma without proof, but specify precisely which
results you are using.

Problem 2. Consider the following initial boundary value problem: find a solution u(z, t) such
that

2(quu)f,uAu:f, forxeQ, 0<t<T,

ot
u(z,t) = 0, forzx e 0, 0 <t <T,
u(z,0) = up(w), for z € Q.
Here, Q C R? is a polygonal domain, 95 its boundary, > 0 a given constant, and f(z,t) and
ug(z) are given right hand side and initial data functions.

In the following let V = HZ(2) and let V}, C V be a finite element approximation space with

(nodal) basis ¢! (x), i =0,...,N. Let to =0 < t; < ... <ty = T be a partition of [0, T] into
N uniform subintervals with time step size k = t,, 41 — t,.

(a) For given u™ € V at time ¢, find the semi-discrete weak formulation of the initial
boundary value problem where the forward Euler method is used to compute a value
u"tl € V at time t,,1.

(b) Introduce matrices My € RN*N with (M,);; = (go?,cp?)m(m, and A;, € RN with
(Ap)ij = (Vgpf, V(p?)m(ﬂ)s. Verify that the fully discrete scheme of the initial bound-

ary value problem can be written as follows: Given a coefficient vector U™ € RN at
time t,, compute U™+ € RN for time ¢, as follows:
n+1 n

k

where the coefficient vector F™ € R™ is formed by setting
ny — h .
<MhF )1_ (f('7tn)7(pi)L2(Q)7 Z—l,...,j\f.

(c) Now introduce an orthonormal basis of eigenvectors ¥/ € RN with eigenvalues A; > 0
of the following generalized eigenvalue problem:
AW = MM, and  (W)TMWI = g, fori,j=1,...,N.
Here, §;; denotes the Kronecker delta. Expand

U
(M, + Ap) + pARU™ = MpF™,

14 (1 — k),

N N
U”:;c;-’\lﬂ, F":j;d?\w. and set §; = Sy

1



Find the Courant (CFL) condition for stability and prove that
k
+1 o
|5 < 0y lef] + mmﬂ forj=1,...,N.
(d) Derive a stability estimate that relates |c?+1\ to the initial coefficient ¢} and right hand
side coefficients df, v =0,...,n.

Problem 3. Consider the interval D := (0,1). Let u € Ry, 8 € R, v € Ryg and f € L'(D)
(note carefully what regularity is assumed of f). Consider the equation

(3.1 pu(z) + foyu(r) — vigu(x) = f(x), for ae. x € D,
(3.2) u(0) =a, u(l)=>0.
Let I be a positive natural number. Let h := I—}rl Let T3, be the uniform mesh composed of

the cells [x;, x;11], with x; := ih, for all 4 in {0...7 + 1}. Let P;(T%) be the Lagrange finite
element space composed of the scalar-valued functions that are continuous and piecewise linear
on the mesh Tj,. We also denote Py o(T) := Pi(T) N H} (D).

(a) Let uqp(z) = a(1 — ) + bz be the natural linear lifting of the boundary conditions. Let
ug(x) := u(x) — uqp(x) so that ug(0) = 0 and ug(1) = 0. Write the weak form of the
problem for uy where the trial and test spaces are Hj(D). Use the norm ||v||g1(p) :=
(Ivll2py + ”817)”%2(D))%'

(b) Prove that the proposed weak form of the problem is well-posed (Hint: You may invoke
the boundedness of the embedding H*(D) C L>(D) when s > 3. Recall also that
min(p, v) > 0.)

(c) Write the Galerkin formulation of the weak formulation proposed in part (a) in the
space Py o(Tp) := P1(T,) N HE(D) and denote by up o the approximation of wug.

(d) Denote up, := up,o + uqp. Prove that

lu = unllmr(p) < Cxellgfll(fm lw =Xl m2(p)-

Explain why we cannot immediately conclude using the usual arguments that
||u — uh||H1(D) S C’(u)h,

where C'(u) depends on w. (Think carefully about what must be true about u in order
for these estimates to hold.)
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