
Applied Analysis Part

January 8, 2025

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are
skipping. No extra credit for doing all four.

Problem 1. Let D be the set of compactly supported functions defined on R and let D′ be the
corresponding set of distributions.

(a) Define convergence in D and D′.
(b) Show that ψ ∈ D satisfies ψ(x) = (xφ(x))′ for some φ ∈ D if and only if∫ ∞

−∞
ψ(x)dx = 0 and

∫ ∞
0

ψ(x)dx = 0.

(c) Find all distributions T ∈ D′ such that xT ′ = 0.

Problem 2. Let H be a Hilbert space and let C(H) be the set of compact operators on H.

(a) State and prove the Fredholm Alternative.

(b) Let H = L2[0, 1]. Define the kernel k(x, y) := x4y2 and let Ku(x) =
∫ 1

0
k(x, y)u(y)dy.

Show that K is in C(H).
(c) Let L = I−λK, λ ∈ C, with K as defined in part (b) above. Find all λ for which Lu = f

can be solved for all f ∈ L2[0, 1]. For these values of λ, find the resolvent (I − λK)−1.

Problem 3. Let L[u] = −u′′, u(0) = 0, u′(1) + u(1) = 0.

(a) Show that L is self adjoint.
(b) Find the Green’s function, g(x, y), for L

(c) Show that Gu(x) =
∫ 1

0
g(x, y)u(y)dy is a self adjoint compact operator.

(d) Use the spectral theory for compact operators and part (c) to show that from among the
eigenfunctions1 of L we may select a complete orthonormal set for L2[0, 1].

Problem 4. Let f be a continuously differentiable, 2π periodic function having the Fourier
series f(t) =

∑∞
k=−∞ cke

ikt. The trapezoidal rule for numerically finding
∫ 2π

0
f(t)dt is given by

Qn(f) =
2π

n

n−1∑
k=0

f(2πk/n).

(a) Consider the partial sum Sn−1(t) =
∑n−1

k=−(n−1) cke
ikt. Show that Qn(Sn−1) =

∫ 2π

0
f(t)dt.

(b) Show that
∣∣Qn(f)−

∫ 2π

0
f(t)dt

∣∣ ≤ 2π‖f − Sn−1‖C[0,2π].

(c) Suppose that |ck| ≤ |k|−6 for all k 6= 0. Estimate
∣∣Qn(f)−

∫ 2π

0
f(t)dt

∣∣.
1Do not find the eigenvalues or eigenfunctions.
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Problem 1. For this problem, you may use without proof Poincaré inequality and interpolation 
estimates as long as you accurately state them.

Let Ω ⊂ R2 be a bounded polygonal domain and f ∈ L2(Ω). Consider the function u ∈ H0
1(Ω)

satisfying ∫
Ω

∇u · ∇v =

∫
Ω

fv, ∀v ∈ H1
0 (Ω).

(1) State an additional assumption under which for every f ∈ L2(Ω), we have u ∈ H2(Ω)
and ‖u‖H2(Ω) ≤ C‖f‖L2(Ω) for a constant C only depending on Ω. From now on we
assume that such assumption holds.

(2) Consider a shape-regular and quasi-uniform sequence of triangulation {Th}h>0 of Ω and
design a conforming finite element approximation uh of u such that

‖u− uh‖H1(Ω) ≤ Ch‖f‖L2(Ω),

where C only depends on Ω, the shape-regularity and quasi-uniformity constants. Jus-
tify your answer by proving the above estimate.

(3) Now let z ∈ H1
0 (Ω) be given by the relations∫

Ω

∇z · ∇v =

∫
Ω

v, ∀v ∈ H1
0 (Ω).

Using a duality-type argument involving z show that∫
Ω

(u− uh) ≤ Ch2‖1‖L2(Ω)‖f‖L2(Ω),

where C only depends on Ω, the shape-regularity and quasi-uniformity constants. Be
sure to clearly justify all the steps.

Problem 2. Let Ω ⊂ R2 be a bounded Lipschitz domain, T > 0, f ∈ C0(0, T ;L2(Ω)) and
u0 ∈ L2(Ω). Consider the solution u to the parabolic problem

∂

∂t
u−∆u = f in Ω× (0, T ], u = u0 on Ω, u = 0 on ∂Ω× (0, T ].

We assume that u is sufficiently smooth. We equip H1
0 (Ω) with the norm ‖v‖H1

0 (Ω) := ‖∇v‖L2(Ω)

and let H−1(Ω) be its dual space.

For N ∈ N and 1
2 ≤ θ ≤ 1, consider the θ-method for the time approximation: Let u0 = u0 and

for n = 1, ..., N , Define recursively un ∈ H1
0 (Ω) as the solution to

1

τ

∫
Ω

(un−un−1)v+

∫
Ω

(θ∇un+(1−θ)∇un−1)·∇v =

∫
Ω

(θf(tn)+(1−θ)f(tn−1))v, ∀v ∈ H1
0 (Ω).

Here τ := T/N and tn := nτ .

Derive the following stability estimate for any 1 ≤ m ≤ N

‖um‖2L2(Ω) ≤ ‖u0‖2L2(Ω) + τ
m∑

n=1

‖θf(tn) + (1− θ)f(tn−1)‖2H−1(Ω)

Hint: Recall that (a− b)a = 1
2a

2 − 1
2b

2 + 1
2 (a− b)2 and (a− b)b = 1

2a
2 − 1

2b
2 − 1

2 (a− b)2.
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Problem 3. For this problem, you may use without proof the Denis-Lions and Bramble-Hilbert
lemmas as long as you accurately state them.

Let K = [0, 1], P = P2 and N = {N1,N2,N3} where for q ∈ P2

N1(q) = q(0), N2(q) = q(1), N3(q) =

∫ 1

0

q.

(1) Prove or disprove that (K,P,N) is a finite element triplet.
(2) Find the dual basis of P2, i.e., {λ1, λ2, λ3} such that Nj(λi) = δij , 1 ≤ i, j ≤ 3.
(3) Define the finite interpolant IK : C0(K)→ P using the previously computed basis.
(4) Show that there is an absolute constant C such that for all w ∈ H3(K) there holds

‖w − IKw‖L2(K) ≤ C|w|H3(K).

Problem 4. For f ∈ C[0, 1], we propose to approximate the solution to the following PDE

−u′′(x) + u(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

Let N ∈ N, h := 1/N , xi := ih and Ui ≈ u(xi) given by

−Ui+1 − 2Ui + Ui−1

h2
+ Ui = f(xi), i = 1, ..., N − 1, U0 = UN = 0.

Show that
max

i=0,...,N
|Ui| ≤ max

i=1,...,N
|f(xi)|.

Hint: Argue for
Uk = max

i=1,...,N−1
Ui and Ul = min

i=1,...,N−1
Ui.
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