\mathbb{D} denotes the unit disc B(0,1).

<u>Problem 1:</u> Let $f(z) = \frac{z+1}{z^2(z-i)}$. Give all Laurent series expansions centered at *i* that converge to *f* in their domain of convergence.

<u>Problem 2:</u> Using residue calculus, compute

$$\int_0^\infty \frac{dx}{(x^2+1)x^{1/3}}$$

<u>Problem 3:</u> Let $\Omega = \{1 < |z - 2| < 3\}.$

a) Show that the function element $(\mathbb{D}, f(z) = \sum_{n=1}^{\infty} z^n/n)$ admits unrestricted analytic continuation in Ω .

b) Show that there does not exist an analytic function g in Ω with g = f on \mathbb{D} .

<u>Problem 4</u>: Let f be analytic on \mathbb{D} . Suppose there is an annulus $A = \{r < |z| < 1\}$ such that the restriction of f to A is one-to-one. Show that f is one-to-one on \mathbb{D} .

<u>Problem 5:</u> Let u be a positive harmonic function on the crescent between the circles $\{|z-i|=1\}$ and $\{|z-2i|=2\}$. Assume that $u(z) \to 0$ as $z \to 0$ on the circle $\{|z-(3/2)i|=(3/2)\}$. Show that then $u(z) \to 0$ as $z \to 0$ on any circle $\{|z-ai|=a\}, 1 < a < 2$.

<u>Problem 6:</u> Construct an entire function that has simple zeros on the positive real axis at the points \sqrt{n} , $n = 1, 2, \dots$, and zeros of order two on the positive imaginary axis at the points $i\sqrt{n}$, $n = 1, 2, \dots$, and no other zeros.

<u>Problem 7:</u> Given is a point $c \in \mathbb{D}$ and a radius r, 0 < r < (1 - |c|). Denote by K the compact set $\overline{\mathbb{D}} \setminus \{|z - c| < r\}$. By considering $\int_{|z|=1} (\overline{z} - f(z))dz - \int_{|z-c|=r} (\overline{z} - f(z))dz$, show that $\max_{z \in K} |\overline{z} - f(z)| \ge (1 - r)$ for every rational function f with poles off K.

<u>Problem 8:</u> Let f be analytic and bounded in \mathbb{D} , let $\{a_k\}_{k=1}^{\infty}$ be a sequence of (distinct) points in \mathbb{D} such that $\sum_{k=1}^{\infty} (1 - |a_k|) = \infty$. Show that if $f(a_k) = 0$ for all k, then $f \equiv 0$.

<u>Problem 9:</u> Let \mathcal{F} be the family of analytic functions on \mathbb{D} that are one-to-one and omit zero. Show that \mathcal{F} is a normal family in $C(\mathbb{D}, \mathbb{C}_{\infty})$.

<u>Problem 10:</u> State the Hadamard Factorization Theorem and explain why it is a "factorization theorem".