Complex Analysis Qualifying Examination

August 2024

In this problem set, \mathbb{D} is the open unit disk centered at zero.

- 1. Formulate the Little Picard Theorem; the Maximum Modulus Principle; Runge's Theorem. Sketch a proof of one of them.
- 2. The sequence z_n satisfies $|\text{Im } z_n| < 1$, $\text{Re } z_n \to +\infty$. Does this imply that $|\sin z_n|$ is bounded? Justify your answer.
- 3. Find a conformal map from $\{\operatorname{Re}(z) > 0\} \setminus \{|z-1| \le 1\}$ onto \mathbb{D} .
- 4. Find the Laurent series expansion of the function

$$f(z) = \frac{1}{z(z-1)(z-2)}$$

valid in the region $\{1 < |z| < 2\}$.

5. The curve γ is the graph of cosine, given by $y = \cos x$ for $-\infty < x < \infty$ on the complex plane z = x + iy. Find:

$$\int_{\gamma} \frac{e^{iz}}{z^2 + 4} dz.$$

(b)

$$\int_{\gamma} \frac{e^{iz}}{(z^2+4)(e^{iz}-1)} dz$$

- 6. The function u is harmonic in \mathbb{D} , non-constant, and satisfies u(0) = 0. Show that for each 0 < r < 1, the function u takes the value 0 on the circle |z| = r at least twice.
- 7. The function f is analytic in the annulus $\{1 < |z| < 3\}$ and satisfies f(z) = f(2z) for any $z \in \mathbb{C}$ such that both z and 2z are inside this annulus. Show that f is constant.
- 8. Polynomials p_n with deg $p_n = n$ converge uniformly on compact subsets of \mathbb{C} to a nonconstant function f. Let c_1^n, \ldots, c_n^n be roots of p_n , listed with multiplicity. Show that the sum of absolute values of all roots of p_n tends to infinity: $\lim_{n\to\infty} \sum_{k=1}^n |c_k^n| = \infty$.

- 9. Suppose that an analytic function $f : \mathbb{D} \setminus \{0\} \to \mathbb{C}$ has an essential singularity at zero and never takes the value 0. Which of the following is guaranteed to be true? Justify your answers.
 - (a) $f(z) = e^{g(z)}$ for some analytic function g and any $z \in \mathbb{D} \setminus \{0\}$;
 - (b) $f(e^z) = e^{g(z)}$ for some analytic function g and any z such that $\operatorname{Re} z < 0$.
- 10. Suppose that an entire non-constant, non-polynomial function f has the following property: at any point z with f(z) = 0, we have f'(z) = 0, $f''(z) \neq 0$.
 - (a) Show that $f = g^2$ for an entire function g.

(b) Using (a), show that f takes all complex values, except possibly zero, infinitely many times.

Comment: You can get a full credit for (b) even if you did not solve (a).