\mathbb{D} denotes the unit disc B(0,1).

<u>Problem 1</u>: Find all poles of the function $f(z) = 1/(e^z - 1)$ and determine their orders. Find the first three terms of the Laurent expansion of f at zero.

<u>Problem 2:</u> Compute

$$\int_{Im(z)=1} \frac{e^{iz}}{z^4 - 16} \, dz$$

<u>Problem 3:</u> Set $f(z) = \sum_{n=1}^{\infty} \frac{1}{n^z} = \sum_{n=1}^{\infty} \frac{1}{e^{z \log n}}$.

a) Show that this series converges uniformly on compact subsets of $\{z \in \mathbb{C} \mid Re(z) > 1\}$.

b) For the Taylor expansion of f at the point $z_0 = 2$, find (i) the radius of convergence and (ii) a formula (an infinite sum) for the k - th Taylor coefficient.

<u>Problem 4</u>: Let $\Omega \subset \mathbb{C}$ be an open set, $\{f_n\}_{n=1}^{\infty}$ a sequence of analytic functions on $\overline{\Omega}$ that converges to f, uniformly on compact subsets of Ω , with f not identically equal to zero. Suppose f(a) = 0 for some $a \in \Omega$, and U is a neighborhood of a. Show: then there is n_0 such that for $n \geq n_0$, f_n has a zero in U.

<u>Problem 5:</u> Does there exist an analytic function f in \mathbb{D} such that $|f(z)| \to \infty$ whenever $|z| \to 1$? Justify your answer.

<u>Problem 6:</u> Let \mathcal{F} be a family of analytic functions in \mathbb{D} . Show that \mathcal{F} is normal in $H(\mathbb{D})$ if and only if there is a sequence $\{M_n\}$ of positive numbers with $\limsup_{n\to\infty} (M_n)^{1/n} \leq 1$ such that if $f \in \mathcal{F}$ has Taylor expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$, then $|a_n| \leq M_n$ for all n.

<u>Problem 7</u>: Suppose g is analytic in $\mathbb{C} \setminus \{0\}$, maps $\mathbb{C} \setminus \{0\}$ to itself, and is injective. Show that $g(z) = \alpha z$ or $g(z) = \alpha/z$ for some $\alpha \in \mathbb{C}$.

<u>Problem 8:</u> Suppose f(z) is analytic near z_0 and $f(z_0) = f'(z_0) = 0$, while $f''(z_0) \neq 0$. Show that there are two smooth curves γ_1 and γ_2 that pass through z_0 , are orthogonal at z_0 , and so that f restricted to γ_1 is real and has a minimum at z_0 , while f restricted to γ_2 is also real, but has a maximum at z_0 . Hint: near z_0 , $f(z) = g(z)^2$ for some injective analytic function g (why?).

<u>*Problem 9:*</u> Let 0 < |a| < 1.

a) Show that the infinite product $f(z) = \prod_{n=1}^{\infty} (1 - a^n z)$ defines an entire function. b) Find the order of f.

<u>Problem 10:</u> State (but do not prove) Runge's theorem, the big Picard theorem, and the monodromy theorem.