Real analysis qualifying exam

August 2024

Each problem is worth ten points. Work each problem on a separate piece of paper. If you are not sure whether or not you are allowed to use a particular result to solve a problem, ask. dx denotes the Lebesgue measure.

1. Let $f \in L^+(X, \mathcal{M}, \mu)$ be a non-negative measurable function on a measure space.

- (a) Show that if $\int f d\mu < \infty$, then $f < \infty$ a.e.
- (b) Show that if $\int f d\mu = 0$, then f = 0 a.e.

2. Let $f(x,t) : [0,1] \times [0,1] \to \mathbb{R}$ be a measurable function such that for every $x \in [0,1]$, the mapping $t \mapsto f(x,t)$ is continuous, and furthermore there exists a function $g \in L^1([0,1], dx)$ such that for each $(x,t) \in [0,1] \times [0,1]$, $|f(x,t)| \le g(x)$. Show that

$$h(t) = \int_0^1 f(x,t) \, dx$$

is continuous.

3. Let X and Y be topological spaces, and $X \times Y$ their product space with the product topology. Denote \mathcal{B}_X , \mathcal{B}_Y , $\mathcal{B}_{X \times Y}$ the corresponding Borel σ -algebras. Show that if $A \in \mathcal{B}_X$ and $B \in \mathcal{B}_Y$, then $A \times B \in \mathcal{B}_{X \times Y}$.

4. Let *F* be a Lipschitz continuous function on \mathbb{R} , that is, $\left|\frac{F(x)-F(y)}{x-y}\right| \leq M$ for all $x \neq y$. Recall that this implies that *F'* exists a.e. on \mathbb{R} . Show that for any a < b,

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a)$$

You are not allowed to refer to the fact that this conclusion holds for any absolutely continuous function.

5. Let

$$C_{0,0}[0,1] = \{ f \in C([0,1],\mathbb{R}) : f(0) = f(1) \}.$$

Let $P_{0,0}$ be the subset of polynomials in $C_{0,0}[0,1]$. Prove that $P_{0,0}$ is dense in $C_{0,0}[0,1]$ in the uniform topology.

6. Show that a normed space X is complete if and only if any absolutely convergent series is convergent (that is, whenever $\sum ||x_n|| < \infty$, the series $\sum x_n$ converges in X).

7. Let X and Y be Banach spaces. If $T : X \to Y$ is a linear map such that $f \circ T \in X^*$ for every $f \in Y^*$, show that T is bounded.

- **8.** Let X be a Banach space, $V \subset X$ a closed subspace, and $x \in X \setminus V$.
 - (a) Prove that there exists a linear functional $\phi_{x,V} \in X^*$ such that $\phi_{x,V}|_V = 0$, $\|\phi_{x,V}\| = 1$, and $\phi_{x,V}(x) = \inf_{y \in V} \|x y\|$.
 - (b) Suppose X is a Hilbert space, and V has an orthonormal basis $\{v_i : i \in I\}$. Find a formula for $\phi_{x,V}$.

9. Let (X, \mathcal{M}, μ) be a *finite* measure space, and $1 . Let <math>f, f_n \in L^p(X, d\mu)$ for $n \in \mathbb{N}$ be functions such that $f_n \to f$ pointwise a.e. and $\sup_n ||f_n||_p < \infty$. Show that $f_n \to f$ weakly. You may use without proof that an integrable function is uniformly integrable. Comment: the result holds in general measure spaces, but you are not asked to prove that.

10. Give examples of the following. Justify your answers.

(a) A Banach space X, a closed subspace V, and a point $x \in X$ such that

$$||x - y|| = \inf_{z \in V} ||x - z||$$

for multiple $y \in V$.

- (b) A bounded linear bijection between normed spaces which is not a homeomorphism.
- (c) A bounded linear functional on ℓ^{∞} which does not arise from duality with ℓ^1 .