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Topology Qualifying Examination
January 2013

Instructions. Answer all questions. Write your name and page number in the upper right corner
of each page. Start each problem on a new sheet of paper, and use only one side of each sheet.

Notation. N denotes the positive integers.R denotes the real numbers.Rn denotes Euclidean
n-dimensional space.

1. Let X be a metric space. Given a cover{Uα} of X by subsets ofX, aLebesgue number for
the cover is a numberǫ > 0 such that ifA ⊂ X anddiam(A) < ǫ, thenA is contained in at
least one setUβ of the cover.

(a) Prove that every open cover of a compact metric spaceX has a Lebesgue number.

(b) Prove that iff : X → Y is a continuous map from a compact spaceX to a metric
spaceY , thenf is uniformly continuous.

2. LetX andY be topological spaces. Letf : X → Y be a quotient map. Definequotient map.
Show that ifY is connected andf−1(y) is connected for ally ∈ Y , thenX is connected.

3. Defineparacompact space. Prove that ifX is paracompact, thenX is normal.

4. Let X andY be topological spaces. Letf : X → Y be a surjective function satisfying the
condition thatint(f(A)) ⊂ f(int(A)) for any subsetA ⊂ X. Show thatf is continuous.

5. For everyS ⊂ N, let XS = {0, 1} with the discrete topology, and letX = ΠSXS with the
product topology. Letfn(S) be0 if n ∈ S, and1 if n 6∈ S. Prove that the sequence{fn} in
X does not have a convergent subsequence.

6. Let F : R
3 → R

3 be given byF (x, y, z) = (x2 − y3, xy, (z − 1)4). For which points
p = (x, y, z) isF a diffeomorphism in a neighborhood ofp?

7. Consider the surfaceS = {(x, y, z) ∈ R
3 | z = x2 + y2}. Compute the tangent space toS

at p = (1, 0, 1) and determine the geodesic going fromp to q = (0, 0, 0) as a parameterized
curve.

8. Define the cotangent bundle of a differentiable manifold. (Hint: first define the cotangent
space at a point.)

9. Describe all smooth surfaces inR3 with coordinates(x, y, z) such that the pullback of the
one-formθ := dy − zdx is identically zero.
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10. Let r > 0 be a constant and consider the surfaceS = {(x, y, z) ∈ R
3 | r = x2 + y2}.

Compute the Gauss and mean curvature functions onS. What is the group of isometries
of S?
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