- Justify all your assertions.
- There are 10 problems. Try to solve all of them and make solutions and proofs as complete as possible.
- Use a separate sheet for each problem.
- Write your name on the top right corner of each page.
- 1. Let X and Y be topological spaces, and let $\pi_X \colon X \times Y \to X$ be the projection on the first coordinate, that is, $\pi_X(x, y) = x$ for $(x, y) \in X \times Y$. Prove or disprove the following assertions:
 - (a) π_X is a continuous map.
 - (b) π_X is an open map.
 - (c) π_X is a closed map.
 - (d) π_X is a quotient map.
- 2. The branching line B is the topological space obtained as the quotient space of $\mathbb{R} \times \{0, 1\}$ with respect to the equivalence relation $(x, 0) \sim (x, 1)$ if and only if x < 0. Prove or disprove the following assertions:
 - (a) B is path-connected.
 - (b) B is locally compact, that is, every point has a neighborhood which is itself contained in a compact set.
 - (c) B is Hausdorff.
 - (d) B is a T_1 space, that is, for every pair of distinct points p and $q \in B$, there exist a neighborhood U_p of p and a neighborhood U_q of q such that $q \notin U_p$ and $p \notin U_q$.
 - (e) B is second-countable.
- 3. Let (X, d) be a metric space, and let Y be a non-empty subset of X. Let $f: X \to \mathbb{R}_{\geq 0}$ be the distance function from Y, that is,

$$f(x) = \inf \left\{ d(x, y) \mid y \in Y \right\}.$$

Show that f(x) = 0 if and only if $x \in \overline{Y}$, where \overline{Y} denotes the closure of Y.

- 4. Let $p: E \to B$ be a covering space. Fix a basepoint $b_0 \in B$, and suppose $p^{-1}(b_0)$ has k elements.
 - (a) Assume B is connected. Show that $p^{-1}(b)$ has also k elements, for every $b \in B$. Prove the assertion under the assumption that B is path-connected to get half points.
 - (b) Assume B is compact. Show that E is also compact.
- 5. (a) Compute the fundamental group of the 2-sphere with k points removed.

- (b) Let ℓ_1, \ldots, ℓ_n be *n* distinct lines in \mathbb{R}^3 passing through the origin. Let *L* be the union of these lines, that is, $L = \bigcup_{i=1}^n \ell_i$. Compute the fundamental group of $\mathbb{R}^3 \setminus L$.
- 6. (a) Formulate the implicit function theorem (you do not have to prove it).
 - (b) Let n be a positive integer and let O(n) denote the set of orthogonal $n \times n$ matrices as a subset of the set of all $n \times n$ matrices M(n, n) (which can be identified with the Euclidean space \mathbb{R}^{n^2}). Prove that O(n) is an embedded submanifold of M(n, n)and find its dimension.
- 7. Let M and N be smooth manifolds and let $f: M \to N$ be a smooth map.
 - (a) Define the map $f^*: \Omega^k(N) \to \Omega^k(M)$ that pulls k-forms on N back to k-forms on M.
 - (b) For a 1-form $\omega \in \Omega^1(N)$, show that

$$d\left(f^{*}\omega\right) = f^{*}\left(d\omega\right).$$

8. Consider the plane \mathbb{R}^2 (with coordinates (x, y)) equipped with the metric

$$\frac{4}{(1+x^2+y^2)^2} \left(dx^2 + dy^2 \right).$$

Find the Gaussian curvature of this metric at each point.

9. Equip the Euclidean space \mathbb{R}^3 with cylindrical coordinates (r, θ, z) (so that $x = r \cos \theta$, $y = r \sin \theta$, z = z). Let Δ be the distribution spanned by X and Y, where

$$X = \frac{\partial}{\partial r}$$
, and $Y = \frac{\partial}{\partial \theta} - r^2 \frac{\partial}{\partial z}$.

Is the distribution Δ integrable?

10. Let ω be a closed 1-form (so $d\omega = 0$) on a smooth manifold M. Prove that ω is exact (so $\omega = df$ for some smooth function f on M) if and only if

$$\int_{\gamma} \omega = 0$$

for every smooth closed curve γ on M.