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Abstract

This code is based on lowest order Raviart-Thomas elements on a

topologically regular triangulation contained in R

2

. It uses a nonlinear

Uzawa type iteration as a solver and can simulate Forchheimer wells

as well as various combinations of Dirichlet and Neumann boundary

conditions.

1 Introduction

This report provides a description of numerical algorithms employed

in the code to implement the Forchheimer well model discussed in [4].

Also included are the results of some numerical simulations.

First, the Forchheimer 
ow equations and the variables therein are

reviewed.

Then, the numerical algorithms are introduced. For discretization

of the Forchheimer 
ow equations, we use mixed �nite element method

with the lowest order Raviart-Thomas elements on triangles. And to

solve the nonlinear system thus formulated, we apply the inexact Uzawa

algorithm.

The mixed method gives a better approximation on the velocity of

the 
ow than the usual �nite element method. This is an advantage

especially in multi-phase 
ows with transport, which is a phenomenon

goverened by the velocity (see e.g. [3]).

Finally, some results of convergence behavior and test runs per-

formed on a single well model are presented. The tests are done for two

cases: (1) where the bottom hole pressure is kept constant and the 
ow

rate is to be determined and (2) where the 
ow rate is prescribed and

the bottom hole pressure is to be calculated. In both cases, the e�ect of
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the Forchheimer tensor � are observed and compared with Darcy 
ow,

where � is not present.

2 Problem formulation

The code implements the Forchheimer nonlinearity along with a Forch-

heimer well model. The Forchheimer 
ow equations in x-y geometry in

non-dimensional form are given by

@(�~�)

@t

+r � (u~�) = q; (1)

�(rp+ �grZ) = (�K

�1

+ ��juj)u:

Here is a brief description of the variables:

�: porosity of the rock

~�: molar density of the gas, �=MW ,

where MW is the molecular weight of the gas

�: mass density of the gas

q: source/sink term for gas

p: gas pressure

g: gravitational acceleration scalar

Z: z-direction vector, (0; 0; z)

�: 
uid viscosity

K: permeability tensor

�: Forchheimer tensor

u: gas velocity= (u

x

; u

y

; u

z

)

juj: gas speed=

q

u

2

x

+ u

2

y

+ u

2

z

It must be noted that some of the above variables depend on the pressure

p, namely � = �(p), ~� = ~�(p), � = �(p), � = �(p), and u = u(p).

3 Code summary

The Raviart-Thomas spaces are de�ned on deformations of a typical

regular triangulation as depicted in Figure 1. The velocity space V

h

consists of those functions which are piecewise linear and have constant

continuous normal components on the edges of the triangles. The pres-

sure space �

h

consists of functions which are piecewise constant on the

triangles (see, e.g. [2]).
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Figure 1: A 5� 6 grid with a well at the upper left corner

At each time step, the mixed approximation is de�ned to be the pair

(U

n+1

; P

n+1

) satisfying the semi-discrete weak form,

< �

�1

(�K

�1

+ �jU

n+1

j)U

n+1

; � > � < P

n+1

;r � � >= � < �grZ; � >

� < r � U

n+1

; ' >� (�t)

�1

< �

n+1

�

n+1

; ' >

= �MW < q;' > �(�t)

�1

< �

n

�

n

; ' > :

Here < �; � > denotes the inner product in L

2

. Note that the velocity

variable U

n+1

is an approximation to �u. Also note that the no 
ow

boundary condition rids of the boundary term in the �rst equation.

More explicitly, this can be written

a(U

n+1

; �) + b(�; P

n+1

) = �

Z




�grZ � �dx;

b(U

n+1

; ') � c(�

n+1

�

n+1

; ') = �MW

Z




q'dx� (�t

�1

)

Z




�

n

�

n

'dx;

where

a(u; �) =

Z




�

�1

(�K

�1

+ � juj)u � �dx;

b(u; p) = �

Z




pr � udx;

c(p; ') = (�t)

�1

Z




p'dx:

As can be easily seen from the weak formulation, explicit Euler

scheme is used for discretization in time.
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The above equations are reduced to matrix equations by introducing

�nite element bases for the spaces V

h

and �

h

. This leads to a saddle-

point problem of the form

 

A B

B

t

�C

! 

X

Y

!

=

 

F

G

!

:

Here A has the Forchheimer nonlinearity while C is a nonlinear matrix

from the time term.

The code utilizes a nonlinear solver based on the inexact Uzawa

algorithm (for details, see [1]). This is a two stage iteration which is

de�ned as follows:

Inexact Uzawa Algorithm

1. Assume that starting approximations (X

0

; Y

0

) are given.

2. For i = 1; 2; : : : do

(a) Set X

i;0

= X

i�1

.

(b) For j = 1; : : : ; k do

X

i;j

= X

i;j�1

+ �

1

Q

A

(F �BY

i�1

�AX

i;j�1

):

(c) Set X

i

= X

i;k

.

(d) De�ne Y

i

by

Y

i

= Y

i�1

+ �

2

Q

C

(�CY

i�1

+B

t

X

i

�G):

The operators Q

A

and Q

C

are preconditioners. Currently, Q

A

is a

diagonal operator with weights depending on the most recent iterate

X

i;j�1

. The preconditioner Q

C

is somewhat more critical to future

code e�ciency and is under development. Currently Q

C

is the identity

(no preconditioning). The positive constants �

1

and �

2

are iteration

parameters which are determined by trial and error. Generally, one

uses k = 1 or k = 2 and �

1

�xed. Then one does some preliminary runs

to determine an appropriate value of �

2

.

When q in (1) is a point source/sink term, e.g. q = Q�, the well

model involves two e�ective radii and has the form

P

0

� P

w

=

Q�

2�K

log(r

1

=r

w

) +

��QjQj

4�

2

(r

�1

w

� r

�1

2

):

Here r

1

and r

2

are e�ective radii. These can be computed experimen-

tally (numerically) or analytically based on some simplifying assump-

tions near the well. The analytical calculation (for lowest order Raviart-

Thomas mixed �nite elements where the well is placed at the corner
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opposite the hypothenuse in an isoceles right triangle) suggests

r

1

=

2

p

2

3

e

��=6

;

r

2

=

12

p

2

18 + �

2

:

The above is, of course, only valid for two dimensional calculations

under simplifying assumptions (e.g. constant coe�cients).

The code allows wells of either bottom hole type (�xed bottom hole

pressure) or prescribed 
ow rate. In the case of a prescribed 
ow rate,

one is allowed to specify a minimal well bore pressure. The computation

shuts down if the bottom hole pressure goes below the minimum well

bore pressure.

4 Test

4.1 Convergence of the numerical method

Here, we verify that the method employed in the code gives a result

which converges to a known analytical solution.

4.1.1 Equation

The code was tested on the parabolic initial value problem

@p

@t

��p = q�; (2)

where � is the Kronecker delta function at the well.

The test was run on the domain 
 = (0; 10) � (0; 10) with time

interval [0; 2]. A well with q = 20:0 was placed on the upper left corner of

the domain as shown in Figure 1. The initial pressure was set p

i

= 250:0

and the following boundary conditions were imposed.

@u

@n

= 0 on f0g � [0; 10] and [0; 10] � f10g;

p = p

i

on f10g � [0; 10] and [0; 10] � f0g:

In other words, we have no 
ow boundary condition on the upper and

left boundaries and Dirichlet boundary condition on the bottom and

right boundaries.

The analytic solution for the in�nite domain problem, i.e. problem

(2) on (0;1) � (0;1) with p = p

i

at in�nity and initial pressure p

i

, is
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given by

p(r; t) = p

i

�

q

�

E

1

 

r

2

4t

!

; (3)

where E

1

(x) is the exponential integral whose series expansion is

E

1

(x) = 0:57721 + lnx+

1

X

n=1

x

n

n � n!

4.1.2 Error

First, discrete l

2

-norm error along the diagonal was calculated, once on

the whole diagonal (i.e. 0 < r < 10

p

2), denoted e

0

, and then away

from the singularity (i.e. 1 < r < 10

p

2), denoted e

1

. Here,

r =

n

x

2

+ (z � 10)

2

o

1=2

and the discrete l

2

-norm is de�ned

kp� p

h

k =

 

1

N

N

X

i=1

(p(x

i

)� p

h

(x

i

))

2

!

1=2

:

Triangles on diagonal are numbered from 1 to N and x

i

is the centroid

of the i-th triangle. p

h

is the calculated, i.e. numerical, solution and p

is as in (3).

The results are given in Tables 1, 2, and 3.

Table 1: Discrete l

2

-norm error on the diagonal for �xed �t = 0:02

e

1

= l

2

error e

0

= l

2

error

h from 1 to 10

p

2 ratio from 0 to 10

p

2 ratio

.500 3.237e-02 3.280e-01

.250 1.490e-02 2.172 2.348e-01 1.397

.125 8.662e-03 1.720 1.670e-01 1.406

Then, an approximate L

2

-norm error on the domain was calculated.

Also because of singularity, the calculations were performed on the

whole domain (i.e. for r > 0) and away from the singularity (i.e. for

r � 1). The de�nition of the norm is as follows.

kp� p

h

k =

 

X

�

i

j(p� p

h

)(x

i

)j

2

j�

i

j

!

1=2

;
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Table 2: Discrete l

2

-norm error on the diagonal for �xed �t = 0:01

e

1

= l

2

error e

0

= l

2

error

h from 1 to 10

p

2 ratio from 0 to 10

p

2 ratio

.500 3.001e-02 3.252e-01

.250 1.242e-02 2.416 2.324e-01 1.399

.125 5.782e-03 2.148 1.650e-01 1.408

Table 3: Discrete l

2

-norm error on the diagonal for �xed h = :125

l

2

error l

2

error

�t from 1 to 10

p

2 ratio from 0 to 10

p

2 ratio

.08 2.456e-02 1.804e-01

.04 1.458e-02 1.684 1.714e-01 1.053

.02 8.662e-03 1.683 1.670e-01 1.026

.01 5.782e-03 1.498 1.650e-01 1.012

where i runs through all triangles and x

i

is the centroid of the triangle

�

i

. The results are given in Tables 4, 5, and 6.

Table 4: L

2

error for �xed �t = 0:02

L

2

error L

2

error

h (for r � 1) ratio (for r > 0) ratio

.500 1.429e-01 7.448e-01

.250 5.775e-02 2.474 3.793e-01 1.964

.125 3.567e-02 1.619 1.945e-01 1.950

4.2 Dependence on �

Reported in this section are the results of computations for various

Forchheimer tensors �. In the following, � will denote 7.6e7�I and

calculations for � = 0; 1; and 10 will be performed.

The computation was performed in a square of side length 5000(ft)

with the upper left corner at the origin, where the well is placed. We
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Table 5: L

2

error for �xed �t = 0:01

L

2

error L

2

error

h (for r � 1) ratio (for r > 0) ratio

.500 1.401e-01 7.382e-01

.250 4.886e-02 2.867 3.741e-01 1.973

.125 2.067e-02 2.364 1.889e-01 1.980

Table 6: L

2

error for �xed h = :125

L

2

error L

2

error

�t (for r � 1) ratio (for r > 0) ratio

.08 1.258e-01 2.574e-01

.04 6.819e-02 1.845 2.120e-01 1.214

.02 3.567e-02 1.912 1.945e-01 1.090

.01 2.067e-02 1.726 1.889e-01 1.030

assume no 
ow boundary conditions on all boundaries. Then, by sym-

metry, this will depict the lower right quarter of the whole domain.

Other assumptions are as follows:

r

w

= 0:35(ft) (well radius)

p

i

= 5000(psi) (initial pressure)

The grid size was kept at �x = �z = 5000=N with N = 30. But, the

number of timesteps N

t

was varied and will be stated for each speci�c

case.

4.2.1 Wells of prescribed 
ow rate

Here, the 
ow rate is prescribed to be

q = 80 (source/sink term):

Bottom whole pressures for � = 0; and 1 were calculated for t = 400

(days) and N

t

= 40. The result is shown in Figure 2.

4.2.2 Wells of bottom hole type

In this case, the bottom hole pressure is �xed at

p

w

= 1000(psi)
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and calculations are done for � = 0; 1; and 10. Plots of q,

R

qdt, and

average pressure for 2,000 days are presented in Figures 3, 4, and 5.

In these cases, N

t

was 20 and 32 for t = 0 to t = 400 and t = 400 to

t = 2000(days), respectively.

Finally, pressure along diagonal after 100 days is sketched in Figure

6. N

t

was 10.
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Figure 2: Bottom hole pressure for q = 80

10



beta=10

beta=1

beta=0

0

20

40

60

80

100

120

140

q

500 1000 1500 2000
days

Figure 3: Source/sink term q
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Figure 5: Average pressure
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Figure 6: Pressure along the diagonal after t = 100 days (p

w

= 1000)
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